Pairs of r-Primitive and k-Normal Elements in Finite Fields

نویسندگان

چکیده

Let $${\mathbb {F}}_{q^n}$$ be a finite field with $$q^n$$ elements and r positive divisor of $$q^n-1$$ . An element $$\alpha \in {\mathbb {F}}_{q^n}^*$$ is called r-primitive if its multiplicative order $$(q^n-1)/r$$ Also, k-normal over {F}}_q$$ the greatest common polynomials $$g_{\alpha }(x) = \alpha x^{n-1}+ ^q x^{n-2} + \ldots ^{q^{n-2}}x ^{q^{n-1}}$$ $$x^n-1$$ in {F}}_{q^n}[x]$$ has degree k. These concepts generalize ideas primitive normal elements, respectively. In this paper, we consider non-negative integers $$m_1,m_2,k_1,k_2$$ , $$r_1,r_2$$ rational functions $$F(x)=F_1(x)/F_2(x) {F}}_{q^n}(x)$$ $$\deg (F_i) \le m_i$$ for $$i\in \{ 1,2\}$$ satisfying certain conditions present sufficient existence $$r_1$$ -primitive $$k_1$$ -normal such that $$F(\alpha )$$ an $$r_2$$ $$k_2$$ Finally as example study case where $$r_1=2$$ $$r_2=3$$ $$k_1=2$$ $$k_2=1$$ $$m_1=2$$ $$m_2=1$$ $$n \ge 7$$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal bases and primitive elements over finite fields

Let q be a prime power, m ≥ 2 an integer and A = ( a b c d ) ∈ GL2(Fq), where A 6= ( 1 1 0 1 ) if q = 2 and m is odd. We prove an extension of the primitive normal basis theorem and its strong version. Namely, we show that, except for an explicit small list of genuine exceptions, for every q, m and A, there exists some primitive x ∈ Fqm such that both x and (ax+b)/(cx+d) produce a normal basis ...

متن کامل

On primitive elements in finite fields of low characteristic

We discuss the problem of constructing a small subset of a finite field containing primitive elements of the field. Given a finite field, Fqn , small q and large n, we show that the set of all low degree polynomials contains the expected number of primitive elements. The main theorem we prove is a bound for character sums over short intervals in function fields. Our result is unconditional and ...

متن کامل

Finding Primitive Elements in Finite Fields of Small Characteristic

We describe a deterministic algorithm for finding a generating element of the multiplicative group of the finite field with p elements. In time polynomial in p and n, the algorithm either outputs an element that is provably a generator or declares that it has failed in finding one. Under a heuristic assumption, we argue that the algorithm does always succeed in finding a generator. The algorith...

متن کامل

Block companion Singer cycles, primitive recursive vector sequences, and coprime polynomial pairs over finite fields

Article history: Received 22 June 2010 Revised 21 November 2010 Accepted 12 February 2011 Available online xxxx Communicated by Zhe-Xian Wan MSC: 11T35 11T06 20G40 15B05

متن کامل

On Finding Primitive Roots in Finite Fields

We show that in any finite field Fq a primitive root can be found in time O(q’ ‘+’ ) Let Fq denote a finite field of q elements. An element 0 E IFq is called a primitive root if it generates the multiplicative group F;,“. We show that a combination of known results on distribution primitive roots and the factorization algorithm of [6] leads to a deterministic algorithm to find a primitive root ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin Of The Brazilian Mathematical Society, New Series

سال: 2023

ISSN: ['1678-7544', '1678-7714']

DOI: https://doi.org/10.1007/s00574-023-00341-z